Dopamine D2 receptor activity modulates Akt signaling and alters GABAergic neuron development and motor behavior in zebrafish larvae.

نویسندگان

  • Bruno Rezende Souza
  • Marco Aurelio Romano-Silva
  • Vincent Tropepe
چکیده

An imbalance in dopamine-mediated neurotransmission is a hallmark physiological feature of neuropsychiatric disorders, such as schizophrenia. Recent evidence demonstrates that dopamine D(2) receptors, which are the main target of antipsychotics, modulate the activity of the protein kinase Akt, which is known to be downregulated in the brain of patients with schizophrenia. Akt has an important role in the regulation of cellular processes that are critical for neurodevelopment, including gene transcription, cell proliferation, and neuronal migration. Thus, it is possible that during brain development, altered Akt-dependent dopamine signaling itself may lead to defects in neural circuit formation. Here, we used a zebrafish model to assess the direct impact of altered dopamine signaling on brain development and larval motor behavior. We demonstrate that D(2) receptor activation acutely suppresses Akt activity by decreasing the level of pAkt(Thr308) in the larval zebrafish brain. This D(2)-dependent reduction in Akt activity negatively regulates larval movement and is distinct from a D(1)-dependent pathway with opposing affects on motor behavior. In addition, we show that D(2)-dependent suppression of Akt activity causes a late onset change in GSK3b activity, a known downstream target of Akt signaling. Finally, altered D(2) receptor signaling, or direct inhibition of Akt activity, causes a significant decrease in the size of the GABAergic neuron population throughout most of the brain. Our observations suggest that D(2) receptor signaling suppresses Akt-GSK3b activity, which regulates GABAergic neuron development and motor behavior.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Endogenous dopamine suppresses initiation of swimming in prefeeding zebrafish larvae.

Dopamine is a key neuromodulator of locomotory circuits, yet the role that dopamine plays during development of these circuits is less well understood. Here, we describe a suppressive effect of dopamine on swim circuits in larval zebrafish. Zebrafish larvae exhibit marked changes in swimming behavior between 3 days postfertilization (dpf) and 5dpf. We found that swim episodes were fewer and of ...

متن کامل

Loss of Dopamine D2 Receptors Increases Parvalbumin-Positive Interneurons in the Anterior Cingulate Cortex

Disruption to dopamine homeostasis during brain development has been implicated in a variety of neuropsychiatric disorders, including depression and schizophrenia. Inappropriate expression or activity of GABAergic interneurons are common features of many of these disorders. We discovered a persistent upregulation of GAD67+ and parvalbumin+ neurons within the anterior cingulate cortex of dopamin...

متن کامل

Enhanced GABA Transmission Drives Bradykinesia Following Loss of Dopamine D2 Receptor Signaling

Bradykinesia is a prominent phenotype of Parkinson's disease, depression, and other neurological conditions. Disruption of dopamine (DA) transmission plays an important role, but progress in understanding the exact mechanisms driving slowness of movement has been impeded due to the heterogeneity of DA receptor distribution on multiple cell types within the striatum. Here we show that selective ...

متن کامل

C. elegans Dopaminergic D2-Like Receptors Delimit Recurrent Cholinergic-Mediated Motor Programs during a Goal-Oriented Behavior

Caenorhabditis elegans male copulation requires coordinated temporal-spatial execution of different motor outputs. During mating, a cloacal circuit consisting of cholinergic sensory-motor neurons and sex muscles maintains the male's position and executes copulatory spicule thrusts at his mate's vulva. However, distinct signaling mechanisms that delimit these behaviors to their proper context ar...

متن کامل

D1 Dopamine Receptor Signaling Is Modulated by the R7 RGS Protein EAT-16 and the R7 Binding Protein RSBP-1 in Caenoerhabditis elegans Motor Neurons

Dopamine signaling modulates voluntary movement and reward-driven behaviors by acting through G protein-coupled receptors in striatal neurons, and defects in dopamine signaling underlie Parkinson's disease and drug addiction. Despite the importance of understanding how dopamine modifies the activity of striatal neurons to control basal ganglia output, the molecular mechanisms that control dopam...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 31 14  شماره 

صفحات  -

تاریخ انتشار 2011